Also solved by Michael N. Fried, Ben-Gurion University of the Negev,
Beer-Sheva, Israel; Ed Gray, Highland Beach, FL; Kee-Wai Lau, Hong Kong,
China; Albert Stadler, Herrliberg, Switzerland; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5466: Proposed by D.M. Batinetu— Giurgiu, “Matei Basarab” National College,
Bucharest, Romania and Neculai Stanciu, “Geroge Emil Palade” School, Buzau,
Romania

Let f: (0, +00) — (0, +0o0) be a continuous function. Evaluate
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Solution 1 by Moti Levy, Rehovot, Israel

The mean value theorem of the integral calculus states:
Let f (x) be continuous function, then
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Taking limits of both sides,
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Since f (z) is continuous then
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Using Stirling’s asymptotic formula, we have
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and that
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We conclude that
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Solution 2 by Bruno Salgueiro Fanego,Viveiro, Spain

Let’s proceed as in http://www./oei.es/historico/oim /revistaoim /numero
53/261_Bruno.pdf:

Let n € N; since f is continuous on (2, Zn+1), by the mean value theorem of integral
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calculus, we have that / f (%) de = f <%> (Tn41 — xp)for some &, € (Tn, Tn+1).
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sandwich rule we obtain that lim * = e, and, hence,
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Moreover, from Stolz’ rule,
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Solution 3 by Ioannis D. Sfikas, National and Kapodistrian University of
Athens, Greece

This particular problem is similar to Problem 121, which was proposed by D.M.
Bétinetu-Giurgiu (“Matei Basarab” National College, Bucharest, Romania) and Neculai
Stanciu (“George Emil Palade” School, Buzau, Romania) to the Math Problems
Journal, Volume 5, Issue 2 (2015), pp. 420-421. We’ll use the following lemma.

Lemma: Let f : [a,b] — R be continuous and (zp)n, (yn)n two convergent sequences of
[a, b] that have the same limit ¢, then

" (0)dt = F(6)(yn — ) + Olyn — 20).
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Proof: Let € > 0, then there exists 6 > 0 such that |f(t) — f(c)| < €, whenever
|x —¢| < ¢. Since zp, yn — ¢, the there is an ng € N such that z,,y, € (C —0,C + 9),
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whenever n > ng. Therefore,
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Note that the given integral equals

T
this comes directly from the substitution ¢ = o Let x,,, y, be the lower, upper bound of
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the last integral respectively then x,,y, — e, since —= — e, and thus
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By the lemma we have

In =n[f(c)(yn — zn) + O(yn — x5)] = ef(e) + O(1),
which proves that the limit equals ef(e).

Also solved by Arkady Alt, San Jose, CA; Kee-Wai Lau, Hong Kong, China;
Soumitra Mandal, Scottish Church College, Chandan -Nagar, West Bengal,
India; Paolo Perfetti, Department of Mathematics, Tor Vergata University,
Rome, Italy; Albert Stadler, Herrliberg, Switzerland; Anna V. Tomova,
Varna, Bulgaria, and the proposers.

5467: Proposed by José Luis Diaz-Barrero, Barcelona Tech, Barcelona, Spain

In an arbitrary triangle AABC, let a, b, ¢ denote the lengths of the sides, R its
circumradius, and let hg, hy, he respectively, denote the lengths of the corresponding
altitudes. Prove the inequality

a® +bc b tca c+ab_ 3abe , 1
+ + > v/ ,
b+c c+a a+b — 2R V hg-hy-he

and give the conditions under which equality holds.

Solution 1 by Paolo Perfetti, Department of Mathematics, Tor Vergata
University, Rome, Italy

We know that h, = (bc)/(2R) and cyclic so the inequality actually is

a’?+be b2 +ca 02+ab> 3abc< SR3
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We prove the stronger one



